

Regulating the Impacts of Nanomaterials: Identifying Gaps in Characterizing Risk

Tess Garvey, Kirti Richa, Dr. Gabrielle Gaustad and Dr. Callie Babbitt Sustainable Nanotechnology Conference November 5, 2012

JEC/

Research questions

- What are the challenges to regulating nanomaterials and nanoproducts?
- Can we use batteries with nanomaterials as a case study for identifying and addressing these challenges?

•In a growing number of products

Project on Emerging Nanotechnologies, 2012

•In a growing number of products •Present in diverse products

Product Category

Project on Emerging Nanotechnologies, 2012

- In a growing number of products
- Present in diverse products
 Evidence that exposure will have significant health and

environmental impacts

Golisano Institute

for Sustainability

	FY 20	006	FY 2009		
	Number of	Million \$	Number of	Million \$	
Category	Projects	Invested	Projects	Invested	
Instrumentation, Metrology, and Analytical Methods	78	26.5	42	11.3	
Human Health	100	24	117	41.6	
Environment	49	11.7	54	43.7	
Human and Environmental Exposure Assessment	5	1.1	14	3.3	
Risk Management Methods	14	3.3	21	3.5	
TOTAL	246	66.6	248	103.4	

Impact Assessment

- Impact studies are very common
 - Methodology taken from toxicology
- •What do they tell us?
 - Relationship of physicochemical properties to likelihood of an adverse effect in a given medium

Figure 1. Inflammatory cell response in lung lavage 24 hr after intratracheal instillation of fine (~ 250 nm) and ultrafine (20–30 nm) TiO₂ expressed by different dose metrics [particle mass (A,B), number (C,D), and surface area (E,F)] and different response metrics [number of PMNs (A, C,E) and PMN/macrophage ratio (B,D,F)].

Oberdorster G, Oberdorster E, Oberdorster J, 2007

Impact Assessment

- Impact studies are very common
 - Methodology borrowed from toxicology
- •What do they tell us?
 - Relationship of physicochemical properties to likelihood of an adverse effect in a given medium
 - Properties: Mass, surface area, shape, surface chemistry
 - Media: Small animals, human and animal cells, and organic material
 - Impacts: Damage to respiratory system such as asthma, damage to other organs, oxidative stress, pulmonary fibrosis and cancer after prolonged exposures
 - Results

•

- Metrics needs to be examined
- Inhalation is important
- Other pathways are less well understood

Figure 1. Inflammatory cell response in lung lavage 24 hr after intratracheal instillation of fine (~ 250 nm) and ultrafine (20–30 nm) TiO₂ expressed by different dose metrics [particle mass (A,B), number (C,D), and surface area (E,F)] and different response metrics [number of PMNs (A, C,E) and PMN/macrophage ratio (B,D,F)].

Oberdorster G, Oberdorster E, Oberdorster J, 2007

•In a growing number of products

- •Present in diverse products
- •Evidence that exposure will have significant health and environmental impacts
- Uncertainty about exposure
 - Lifecycle

	FY 2	006	FY 2009	
Catagony	Number of	Million \$	Number of	Million \$
Category	Projects	Invested	Projects	Invested
Instrumentation, Metrology, and Analytical Methods	78	26.5	42	11.3
Human Health	100	24	117	41.6
Environment	49	11.7	54	43.7
Human and Environmental Exposure Assessment	5	1.1	14	3.3
Risk Management Methods	14	3.3	21	3.5
TOTAL	246	66.6	248	103.4

Nanotechnology, Environmental and Health Implications Working Group, 2011

Exposure Studies

•Exposure studies determine the relevant pathways, time, and degradation of nanomaterials in the environment

•Exposure is less well characterized

- Methodologies (modeling, data collection, and simulation) are less well established and replicable
- Metrics

Exposure Studies

•Exposure studies determine the relevant pathways, time, and degradation of nanomaterials in the environment

•Exposure is less well characterized

- Methodologies (modeling, data collection, and simulation) are less well established and replicable
- Metrics

•Gap at EoL

- •In a growing number of products
- Present in diverse products
- •Evidence that exposure will have significant health and environmental impacts
- •Uncertainty about exposure
 - Lifecycle

	FY 200)6	FY 2009	
	Number of	Million \$	Number of	Million \$
Category	Projects	Invested	Projects	Invested
Instrumentation, Metrology, and				
Analytical Methods	78	26.5	42	11.3
Human Health	100	24	117	41.6
Environment	49	11.7	54	43.7
Human and Environmental Exposure				
Assessment	5	1.1	14	3.3
Risk Management Methods	14	3.3	21	3.5
TOTAL	246	66.6	217.3	134.1

Mismatch between Research and Regulation

What can we learn from other regulation?

Nano Research	Research Category	Regulation	Metrics
Assays of Interaction between nanomaterials and organic			Total Maximum
matter (TiO2, Heavy metals, Natural Organic matter; soil:			Daily Load
change in bacterial growth)			(TMDL),
		EPA Clean Air,	Wasteload
	Hazard identification	Clean Water Acts	Allocation (WLA),
In vitro assays (daphnia, rainbow trout, green algae)			Load Allocation
			(LA), Margin of
			Safety (MOS), etc.
In vitro assays (human brain, lung, human dermal			Permissible
fibroblasts, gingival fibroblasts, renal cells, bronchial		OSHA Health and Safety standards	Exposure Limits
epithelial cells, lung epithelial cells, pulmonary cells, etc)			(PEL),
In vitro assays (Rats lung tissue, rabbits dermal and mice	Dose response assessment		Recommended
lymph node hamster ovary cells daphnia rainbow trout	1		Exposure Limits
oreen algae)			(REL), Lethal Dose
			(LD)
Particle, Substance Flow Analyses			Maximum number
Simulation			of workers
Probabilistic Models (MFA)		EPA Toxic Substances Control Act	exposed; Number
Column modeling/ numerical modeling, Video Exposure	_		of workers exposed
Modeling	Exposure assessment		to acute inhalation;
Clinical Detection			substantial
Quantitative Exposure Assessment			environmental
Risk Assessment Framework			release (volume)

OSHA Exposure Limits

- OSHA/NIOSH regulatory tools: Permissible Exposure Limit/ Recommended Exposure Limit
- Particulate Not Otherwise Regulated
- Respirators required

Material	NIOSH	OSHA	Exp. Route	Target
	REL	PEL	-	Organ
Ammonium chloride	TWA 10		Inh, Con	Eyes,
fume	mg/m^3			skin, resp
	ST 20 mg/m^3			sys
Cadmium fume	Carcinogenic	TWA .005 mg/m^3	Inh	resp sys, kidneys, blood [prostati
				c & lung cancer]
Copper Fume	TWA 0.1	TWA 0.1	Inh, Con	eyes,
	mg/m3	mg/m3		skin, resp sys
Ferrovanadium dust	TWA 1 mg/m3	TWA 1	Inh, Con	Eyes,
		mg/m^3		resp sys
Particulates not	See	TWA 15	Inhalation,	Eyes,
otherwise	Appendix	mg/m3	Skin and/or	skin,
regulated		(total)	eye contact	resp.
				system
Perlite	TWA 10	TWA 15	Inh, Con	Eyes,
	mg/m3 (total)	mg/m3		skin, resp
	TWA 5 mg/m3	(total),		sys
	(resp)	TWA 5		
		mg/m3		
		(resp)		
Vanadium fume	C 0.05 mg	C 0.1 mg	Inh, Con	Eyes,
	V/m3 [15-	V2O5/m3		skin, resp
	minutel			SVS

NIOSH pocket guide 2011

Establishing a PEL for Nanomaterials

•PEL for Particulates not otherwise regulated: 15 mg/m³ for 8-hour period

 For nanomaterials much smaller doses have been shown to have high probability of impact

=>Need more stringent PEL for nanomaterials

OSHA Exposure Limits

- OSHA/NIOSH regulatory tools: Permissible Exposure Limit/ Recommended Exposure Limit
- Particulate Not Otherwise Regulated
- Respirators required

Pros and Cons

- Pros:
 - Single score metric
 - Widely accepted
 - Has basis for enforcement
- Cons:
 - Doesn't protect consumer
 - Doesn't cover end-of-life except WM workers
 - takes a long time to get legislate
 - companies may not have sensors sensitive enough
 - expensive to monitor

Material	NIOSH	OSHA	Exp. Route	Target
	REL	PEL	_	Organ
Ammonium chloride	TWA 10		Inh, Con	Eyes,
fume	mg/m^3			skin, resp
	ST 20 mg/m^3			sys
Cadmium fume	Carcinogenic	TWA .005	Inh	resp sys,
		mg/m^3		kidneys,
				blood
				[prostati
				c & lung
				cancer]
Copper Fume	TWA 0.1	TWA 0.1	Inh, Con	eyes,
	mg/m3	mg/m3		skin, resp
				sys
Ferrovanadium dust	TWA 1 mg/m3	TWA 1	Inh, Con	Eyes,
		mg/m^3		resp sys
Particulates not	See	TWA 15	Inhalation,	Eyes,
otherwise	Appendix	mg/m3	Skin and/or	skin,
regulated		(total)	eye contact	resp.
				system
Perlite	TWA 10	TWA 15	Inh, Con	Eyes,
	mg/m3 (total)	mg/m3		skin, resp
	TWA 5 mg/m3	(total),		sys
	(resp)	TWA 5		
		mg/m3		
		(resp)		
Vanadium fume	C 0.05 mg	C 0.1 mg	Inh, Con	Eyes,
	V/m3 [15-	V2O5/m3		skin, resp
	minute]			sys

NIOSH pocket guide 2011

Landfill Ban

State or local statutes banning products/ materials from entering a landfill

• Product-specific ban

Pros and cons:

• Pros:

- reduce landfill volumes,
- improve soil and groundwater health,
- Requires recovery

• Cons:

- Difficult and costly to enforce without clear economic incentive
- reduces exposure only at EoL
- Product-based
- Nano-specific: Uncertainty about ability to leach in landfills and the impact
- Diverse array of products

Air Quality Standards

Clean Air Act's National Ambient Air Quality Standards

• Use of primary and secondary standards to protect 1) vulnerable populations and 2) public welfare protection

Pros and cons:

• Pros:

- Covers all lifecycle stages
- Spans all products
- Particulate matter already monitored

• Cons:

- Long time to legislate and updated infrequently
- Only covers inhalation exposure

Polluta [final rule	nt cite]	Primary/ Secondary	Averaging Time	Level	Form
Carbon Monoxide	Carbon Monoxide		8-hour	9 ppm	Not to be exceeded more than once
[76 FR 54294, Aug	<u>31, 2011]</u>	primary	1-hour	35 ppm	per year
<u>Lead</u> [73 FR 66964, Nov 12, 2008]		primary and secondary	Rolling 3 month average	0.15 µg/m ^{3 <u>(1)</u>}	Not to be exceeded
Nitrogen Dioxide	<u>Nitrogen Dioxide</u> [75 FR 6474, Feb 9, 2010] [61 FR 52852, Oct 8, 1996]		1-hour	100 ppb	98th percentile, averaged over 3 years
[75 FR 6474, Feb [61 FR 52852, Oct			Annual	53 ppb (2)	Annual Mean
<u>Ozone</u> [73 FR 16436, Ma	r 27, 2008]	primary and secondary	8-hour	0.075 ppm ⁽³⁾	Annual fourth-highest daily maximum 8-hr concentration, averaged over 3 years
			Annual	15 µg/m ³	annual mean, averaged over 3 years
Particle Pollution [71 FR 61144,	PM2.5	secondary	24-hour	35 µg/m ³	98th percentile, averaged over 3 years
Oct 17, 2006]	PM ₁₀	primary and secondary	24-hour	150 µg/m ³	Not to be exceeded more than once per year on average over 3 years
<u>Sulfur Dioxide</u> [<u>75 FR 35520, Jun 22, 2010]</u> [38 FR 25678, Sept 14, 1973]		primary	1-hour	75 ppb (4)	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years
		secondary	3-hour	0.5 ppm	Not to be exceeded more than once per year

as of October 2011

Conclusions Moving Forward

Gaps:

- Developing appropriate impact methodology
- Exposure uncertainty and at EoL
- Metrics development to bridge the gap between research and regulation

Future work:

- Quantifying the tradeoffs of different types of regulation through BCA
- Exploring hybrid regulation
- Applying these lessons to batteries

